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Abstract

For the safe operation of autonomous vehicles, a dense
3D map of the surroundings is required for operations like
planning and navigation. Currently, to generate these dense
3D maps, point cloud data from LiDAR (sparse but long
range) and Stereo cameras (Dense but short ranged) are
fused together. However, both sensors vary significantly
in their structures and modalities. Thus, a proper method
for aligning and smoothening the point cloud data is crit-
ical for Stereo-LiDAR sensor fusion. Unlike previous ap-
proaches which use raw RGB images and Lidar data to
generate dense depth maps, our approach utilizes the dis-
parity generated from stereo images and combines it with
the sparse data from Lidar sensor. Early testing of the mod-
els shows that it is able to produce high quality dense depth
maps in accordance with some of the best approaches. The
approach shows promise to be carried forward as a strong
research project. The small footprint of the model also en-
ables fast inference.

1. Introduction
Estimation of Depth Maps has been one of the funda-

mental tasks in the computer vision field. Being able to
acquire accurate depth maps is a first step for many vision
tasks. Several tasks like 3D mapping and localization, 3D
object detection are all highly dependent on successful esti-
mation of correct depth maps. Such jobs underlie numerous
applications including augmented reality, virtual reality, au-
tonomous driving, and robotics.

Given a pair of rectified stereo images, the ultimate goal
of depth estimation is to calculate the disparity d for each
pixel in the reference image for a given pair of rectified
stereo images. Disparity refers to the horizontal displace-
ment between a pair of corresponding pixels on the left and
right images. Camera’s focal length f is useful in calculating
depth d of a particular pixel.

Solving the Stereo matching problem has been a promi-
nent method in constructing depth maps. The stereo match-

ing pipeline involves finding the corresponding points based
on matching cost and post-processing. Traditionally, this
has been done by applying window-based methods [1] or
global-optimization methods [6] to construct a disparity
map. Recently, deep convolutional neural networks (DC-
NNs) have been used to solve the stereo matching prob-
lem [19], [11]. This is mainly because they have better
performance than traditional approaches on a variety of vi-
sion tasks such as image classification and object detec-
tion. Generally, DCNNs are trained end-to-end with a large
amount of ground-truth labels.

Recent research works [18]–[13] are using deep learning
as an approach to exploit a synchronized RGB image for
depth completion. These methods have surpassed conven-
tional approaches [4] and are showing significant improve-
ments. The research [13] train a network to estimate surface
normal from both the RGB image and LiDAR data and then
guide depth completion using the recovered surface normal.
The aim of such models is to fuse the feature vectors from
sparse depth and RGB image together directly for further
processing. Hence, they adopt operations like concatena-
tion or element-wise addition for such purposes.

In general, matching cost computation, cost support ag-
gregation, cost volume regularization, and disparity refine-
ment constitutes the 4-stage pipeline for a typical stereo
matching algorithm [17]. In [22], a unique model for stereo
matching network is achieved by proposing two techniques:
Input Fusion to incorporate the geometric information from
sparse LiDAR depth with the RGB images for learning joint
feature representations, and Conditional Cost Volume Nor-
malization to adaptively regularize cost volume optimiza-
tion in dependence on LiDAR measurements. But this
model has less flexibility when it comes to different net-
work architectures.

At present, either light detection and ranging (LIDAR)
or stereo matching algorithms are used to acquire such
depth information. A high-resolution LIDAR is expensive
and produces sparse depth maps at large ranges while the
stereo matching algorithms are able to generate dense depth
maps but are typically less accurate than LIDAR at long
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ranges. Nowadays, an innovative model of combining these
approaches together to generate high-quality dense depth
maps is being used in several research works. The re-
search in [5] follows a similar model which adopts a self-
supervised training process and generates depth maps.

Hence, it is evident from the above discussion that ac-
curate dense depth maps are a result of an adequate combi-
nation of stereo matching algorithms and LiDAR data. We
implement a pyramid stereo matching network consisting of
two main modules: spatial pyramid pooling and 3D CNN.
The spatial pyramid pooling module takes advantage of the
capacity of global context information by the aggregating
context in different scales and locations to form a cost vol-
ume while the 3D CNN learns to regularize cost volume
using stacked multiple hourglass networks in conjunction
with intermediate supervision. Once we get good stereo
correspondences from our model, they can be combined
with the LiDAR data to get dense depth maps. Extensive
experiments are conducted on the KITTI 360 Depth Com-
pletion Dataset to evaluate the effectiveness of our proposed
method.

2. Background and Related work
In [17], dense depth maps are achieved using guided con-

volution between sparse images and guided RGB images.
Both the inputs are passed through a set of convolution lay-
ers before generating the output through Guided convolu-
tion layers generating dense maps. The concept of guided
image filtering is used for implementing guided convolution
over images. The research work [21] applies Input Fusion
and Conditional Cost Volume Normalization (CCVNorm)
on the LiDAR information. The Stereo images are passed
through a fusion layer of sparse LiDAR depths and the
CCVNorm is used for the 2D Convolution. A few research
works [22] focuses on scene completeness of sparse depth
completion (SCADC). It uses depth maps with structured
upper scene estimation using Stereo Cameras. Non-Local
Spatial Propagation Network for Depth Completion [12]
is one of the unique approaches to find depth completion
by estimating non-local neighbors using RGB and Sparse
depth images and then iterating over them to find refined
dense depth completion using non-local spatial propagation
procedure.

2.1. Stereo Matching

Stereo matching has been a fundamental problem in
computer vision. In general, a typical stereo matching algo-
rithm can be summarized into a four-stage pipeline, consist-
ing of matching cost computation, cost support aggregation,
cost volume regularization, and disparity refinement. This
design paradigm is widely used even after the start of us-
age of deep learning for learning depth maps(which in turn
gives very high performance). For instance, [5] propose to

learn a feature representation for matching cost computation
by using a deep Siamese network, and then adopt the clas-
sical semi-global matching (SGM) [12] to refine the dispar-
ity map. Disparity maps are typically derived from several
layers of convolutional matching. For supervised learning
techniques, the models are trained using ground-truth dis-
parity maps. Several works are focusing on resorting to ex-
tra information to refine results [24], forming a correlation
volume [10], and designing architectures to extract features
[3]. In addition to the supervised approaches, unsupervised
methods have also gained popularity [8]. These approaches
rely on a warping error to provide a training loss. This error
measures the difference between the input image from one
side and the warped image of the stereo pair from the other
side. The warping process is implemented using differen-
tial bilinear interpolation. Still, there is a noticeable gap
between the supervised methods and unsupervised methods
with respect to performance. Incorporating warping loss in
supervised training has been shown to be beneficial over su-
pervised training alone [15].

2.2. Depth estimation

Depth estimation is one of the fundamental tasks in com-
puter vision.The depth completion task is a sub-problem of
depth estimation. The depth completion task has strong pri-
ors on scene depth. There are several Sparsity-invariant op-
erations for this task and they have proved to be more effec-
tive than regular convolutions [7]. With additional color im-
ages, the depth completion process can be guided by color
information. Recent works show a performance boost using
the color information contained in RGB data.

2.3. Guided Filtering

This type of filtering utilizes a reference or guidance im-
age as prior and aims to transfer the structures from the
reference image to the target image for color/depth image
super-resolution, image restoration, etc. In [23], a guided
filtering layer has been proposed by Wu et al. to perform
joint upsampling. It reformulates the conventional guided
filter and makes it differentiable as a neural network layer.
Hence, the kernel weights are thus generated by the same
close-form equation of a guided filter to filter the input im-
age. This kind of operator is inapplicable to fill-in sparse
LiDAR points, as commented

2.4. RGB Image and LiDAR Fusion

Fusion of RGB images and LiDAR data has obtained
more attention because of its practicability and high perfor-
mance for depth perception. There are mainly two differ-
ent settings which are explored by several prior works: Li-
DAR fused with a monocular image or stereo ones. As the
depth estimation from a single image is typically based on
a regression from pixels, which is inherently unreliable and
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ambiguous, most of the recent monocular-based works aim
to achieve the completion on the sparse depth map obtained
by LiDAR sensor with the help of rich information from
RGB images or they refine the depth regression by having
LiDAR data as a guidance. Current state-of-the-art studies
focus on how to accurately compute the matching cost us-
ing CNNs and how to apply semi-global matching (SGM) to
refine the disparity map. In Pyramid pooling, the empirical
receptive field is much smaller than the theoretical receptive
field. In ParseNet [9], global pooling with FCN enlarges the
empirical receptive field to extract information at the whole
image level and it actually improves semantic segmentation
results. PSPNet [25] presents a pyramid pooling module to
collect the effective multiscale contextual prior. Inspired by
PSPNet, DeepLab v3 proposes a new ASPP module aug-
mented with global pooling. Ideas of spatial pyramids have
been used for optical flow. In SPyNet [14], image pyramids
helps in estimating optical flow in a coarse-to-fine approach.
PWC- Net [16] improves optical flow estimation by using
feature pyramids.

3. Proposed Methods
3.1. Baseline Method

The initial plan of the project was to take forward the
approach from [17] as our primary reference idea, which
takes inspiration from learning kernel weights from a sin-
gle guidance image. We had planned to study the effect on
the model performance by introducing a dual branch guid-
ance module consisting of stereo images. We faced major
issues in compiling it’s open-source code which required
C++ compatibility on the Discovery server. Due to these
issues, we decided to change the baseline model. Since
most approaches for generating Dense depth maps utilize
the same input (Single RGB and LiDar data), we decided to
check the efficiency of our approach in comparison to [20].
The model uses a simple Encoder-Decoder architecture to
encode the RGB and LiDAR data, concatenates them and
passes them through the decoder architecture.

3.2. Proposed changes and Reasoning

We denote the sparse depth map as Ds which is obtained
from the LiDAR. The two stereo images obtained will be
labeled as Il and Ir in the report. The predicted dense depth
map will be denoted as Dt. In our approach, we propose
removing the RGB branch from the model and using a dis-
parity branch instead.

For this disparity branch, we propose a dual branched
model which takes the data from the two stereo images and
generates a feature vector for both of them using a CNN
encoder. This feature vector can then be passed through a
Spatial pyramid pooling module(SPP) to increase the recep-
tive field. The output of the SPP module can then be fed to

the last convolution layer. The generate output feature vec-
tor from the two stereo images can thus be used to generate
a cost volume which can be used to generate a dense depth
map in conjunction with the LIDAR data.

3.2.1 Spatial Pyramid Pooling Module

Taking inspiration from [2], we employ a Spatial Pyramid
Pooling Module (SPP) module in our implementation. SPP
module helps in determining the contextual relationship be-
tween the different pixel intensities. It helps in identifying
the relationship between a given object and its surround-
ings.

The SPP module is designed to remove the fixed-size
constrain of CNN. In this project, the SPP is a four fixed
layer average pooling block structure with filter sizes 64,
32, 16 and 8. It takes input the data from the last convo-
lution block, runs average pooling with the given four fil-
ters and passes the outputs through four parallel convolution
blocks. The output of these four blocks is then concatenated
and upsampled to match with the output size of convolu-
tion block 3 and concatenated with it to produce the output
feature map. This output feature map has high receptive
field and an understanding of contextual information. Fig-
ure 2 represents the structure of the SPP module used in this
project.

3.2.2 Encoder Network

We use three independent but identical encoder networks in
our model. Two CNN encoders are used to encode the fea-
tures from both of the stereo images while the third encoder
network is used to generate a feature map from the LIDAR
data. In general, a single encoder network contains 5 con-
volution layers with filter size of 3 for each of them. These
convolution layers are coupled with a batch normalization
and relu activation layer each. The first convolution block
(convolution, batch normalization and relu) reduces the size
of the input image by half, the next two convolution blocks
again halve the size of the input and finally the last two lay-
ers bring down the size to 1/8 of the input image.

The encoder network contains the SPP module in itself
and thus the output feature map generated has a larger re-
ceptive field coverage.

3.2.3 Cost Volume

The feature maps produced for each stereo image after the
encoder CNN module and SPP module are 1/8 of the origi-
nal input size and are processed using a pointwise coorela-
tion layer to produce the cost volume for this branch. The
coorelation layer correlates the features in the two images
in a horizontal fashion. Since, we only consider a displace-
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Figure 1. Model Pipeline

Figure 2. Spatial Pyramid Pooling Module

ment of 24 pixels in the two feature maps, the maximum
disparity for the model is 192 pixels in the input image.

3.2.4 Fusion

Unlike traditional approaches which sum the data from the
two branches and work on it, in our fusion layer, we con-
catenate the cost volume produced by the disparity branch
and the feature vector generated by the CNN for the LIDAR
data. This concatenation preserves the information received
from the two branches much better.

3.2.5 Decoder Network

In order to learn more context information, we use a stacked
hourglass (encoder-decoder) architecture, consisting of re-
peated top-down/bottom-up processing in conjunction with
intermediate supervision.

This decoder network takes the output from the fusion
unit and upsamples the output using 5 up-convolution lay-
ers. The output is then sent to a regression layer to produce
the depth image and calculate the loss value.

Figure 3. Stack hourglass decoder network

3.2.6 Loss function

The KITTI depth completion dataset does not contain the
dense depth annotation. Only about 30% of the pixels in the
depth image are annotated. The loss function therefore only
uses the valid pixels in the reference ground truth depth map
when computing the loss value. We use the Mean square er-
ror(MSE) to compute the error between the produced dense
depth map and the ground truth for only the annotated pix-
els.

Ldepth =
1

|V |
∑
i,jϵV

||Dg(i, j)−Dt(i, j)||22 (1)

where Dg(i, j) and Dt(i, j) denote the ground truth and
predicted depth values at (i, j) pixel, respectively. V de-
notes the set of valid depth points from semi-dense anno-
tation. Along with this loss, we also use the second-order
gradients of the ground truth depth map to produce smooth
dense maps.

Lsmooth =
1

N

∑
i,j

||δ2xDt
ij + δ2yD

t
ij ||22 (2)

The total loss therefore can be calculated as:

L = Ldepth + Lsmooth (3)
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where w1 is a constant to tune the smoothness parameter.
High values of w1 can cause the image to become too blurry
and loose important details.

4. Experiments and Results
4.1. Datasets

The following datasets were used in this project:

4.1.1 KITTI depth selection dataset

This dataset provides sequential stereo images and LIDAR
point clouds for different road environments. The total
dataset consists of about 42,949 training samples and 1000
validation samples available publicly. The dataset is fairly
complicated with upto 15 cars and upto 30 pedestrians vis-
ible per image on highways as well as in rural areas. The
image size captured by the dataset is 1240x376. For our
full model, we only use 5 full videos for training due to
time constraint.

4.1.2 KITTI stereo dataset

The KITTI stereo dataset is a real-world dataset consisting
of 194 training stereo image pairs and 195 testing image
pairs. The ground truth data is obtained using a LIDAR
sensor, which is a sparse depth image. The image size cap-
tured by the dataset is 1240x376, which is consistent with
the depth selection dataset. For our training we divide the
dataset into a 80:20 train and validation split.

4.2. Implementation details

To implement the model, we first trained a disparity
model using the architecture in Figure 1. The first branch
of the two stereo images was kept the same till the cost vol-
ume part and a decoder network similar to 3.2.5 was used
in the model to train it to produce depth disparities. We uti-
lized the Pretrained weights from [2] and divided the weight
file as per our network architecture. We also used the CNN
weights from the baseline model for training. The model
was trained end-to-end with Adam optimizer. The maxi-
mum disparity(D) of the model was set to 192. We trained
this model on the KITTI stereo dataset using a learning rate
of 0.001 for 30 epochs.

The weight file of the first part of the disparity model
was divided appropriately for the Encoder block and the
Decoder (Stack-Hourglass model) blocks and used in the
final model to speed up the training. For the final model,
we again used the Adam optimizer with a learning rate of
0.001. We also utilized the weight file provided by the base-
line model for the encoder blocks. The whole model was
trained on 4 video blocks (Raw RGB images and LiDAR
data) for 5 epochs. We could not train the model on the

RMSE MAE iRMSE iMAE
Guidenet 736.24 218.33 2.25 0.99
Baseline 792.80 225.81 2.42 0.99

Ours 1548.89 493.65 5.01 1.86

Table 1. Evaluation metrics

complete KITTI depth selection dataset as it is quite large
and we had time constraints on the project.

4.3. Evaluation Metrics

We used four standard metrics for evaluation of KITTI
dataset: root mean squared error (RMSE), mean abso-
lute error (MAE), root mean squared error of the inverse
depth (iRMSE) and mean absolute error of the inverse depth
(iMAE). Among them, RMSE and MAE directly measure
depth accuracy, while RMSE is more sensitive. iRMSE and
iMAE compute the mean error of inverse depth, which gives
less weight for far-away points.

The comparison of our model performance is sum-
marised in Table 1. As expected, the numerical results on
the evaluation metrics are not great. This maybe due to mul-
tiple factors, one of the most prominent ones being lack of
training on the complete KITTI dataset.

One of the noticeable things in the output image in Fig-
ure 2 is that the model still produces consistent depth im-
ages which seems to be in agreement with the outputs of
the baseline model as well as the ground truth depth. There
are some faulty depth measurements in the center of the im-
age for faraway object which is left to be improved in future
work.

The small footprint of the model enables fast inference
times and is able to generate depth map from stereo images
and Lidar data in about 0.4s on using a Nvidia GTX 1060
GPU and Intel i7-2.8Ghz CPU.

5. Conclusion and Future work

In this project, we proposed a model to produce dense
depth maps from LIDAR data using stero information. LI-
DAR produces depth maps which are quite accurate but
sparse and stereo disparities produce depth maps which are
not very accurate but dense. The approach proposed in the
project produces dense depth maps by utilizing the strong
aspects from both the sensor data. Although, the results
produced by the model are not great in comparison to the
current state of the art models, the full potential of the pro-
posed method is still to be explored. For example, better re-
sults can be obtained if the model is allowed to train longer
on the full KITTI depth completion dataset. Results will
also improve if we train the model end-to-end instead of
training a disparity model first and utilizing it’s weights.

For the future work, we would like to train the model
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Figure 4. Comparison of results of depth map from our model vs baseline model

completely end-to-end on bigger datasets like SceneFlow
to test the capabilities of the model. Moreover, we would
also want to experiment with dilated convolutional layers in
the model.

The research work to create dense depth maps is an inter-
esting research area and can really help in cost reduction for
autonomous driving and navigation. For example, high res-
olution LIDARs are comparatively much more expensive
than low resolution ones and if a machine learning model
can perform the task of dense depth estimation, it will be
extremely useful for industrial applications.
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